Source code for dagster_databricks.databricks

import base64
import logging
import time
from typing import Any, Mapping, Optional

import dagster
import dagster._check as check
import dagster_pyspark
import requests.exceptions
from dagster._annotations import public
from databricks_api import DatabricksAPI
from databricks_cli.sdk import ApiClient, ClusterService, DbfsService, JobsService

import dagster_databricks

from .types import (
    DatabricksRunLifeCycleState,
    DatabricksRunResultState,
    DatabricksRunState,
)

# wait at most 24 hours by default for run execution
DEFAULT_RUN_MAX_WAIT_TIME_SEC = 24 * 60 * 60


[docs]class DatabricksError(Exception): pass
[docs]class DatabricksClient: """A thin wrapper over the Databricks REST API.""" def __init__(self, host: str, token: str, workspace_id: Optional[str] = None): self.host = host self.workspace_id = workspace_id # TODO: This is the old shim client that we were previously using. Arguably this is # confusing for users to use since this is an unofficial wrapper around the documented # Databricks REST API. We should consider removing this in the future. self.client = DatabricksAPI(host=host, token=token) # Expose an interface directly to the official Databricks API client. self._api_client = ApiClient(host=host, token=token) @public @property def api_client(self) -> ApiClient: """Retrieve a reference to the underlying Databricks API client. For more information, see the `Databricks Python API <https://docs.databricks.com/dev-tools/python-api.html>`_. **Examples:** .. code-block:: python from dagster import op from databricks_cli.jobs.api import JobsApi from databricks_cli.runs.api import RunsApi @op(required_resource_keys={"databricks_client"}) def op1(context): # Initialize the Databricks Jobs API jobs_client = JobsApi(context.resources.databricks_client.api_client) runs_client = RunsApi(context.resources.databricks_client.api_client) # Example 1: Run a Databricks job with some parameters. jobs_client.run_now(...) # Example 2: Trigger a one-time run of a Databricks workload. runs_client.submit_run(...) # Example 3: Get an existing run. runs_client.get_run(...) # Example 4: Cancel a run. runs_client.cancel_run(...) Returns: ApiClient: The authenticated Databricks API client. """ return self._api_client def read_file(self, dbfs_path: str, block_size: int = 1024**2) -> bytes: """Read a file from DBFS to a **byte string**.""" if dbfs_path.startswith("dbfs://"): dbfs_path = dbfs_path[7:] data = b"" bytes_read = 0 dbfs_service = DbfsService(self.api_client) jdoc = dbfs_service.read(path=dbfs_path, length=block_size) data += base64.b64decode(jdoc["data"]) while jdoc["bytes_read"] == block_size: bytes_read += jdoc["bytes_read"] jdoc = dbfs_service.read(path=dbfs_path, offset=bytes_read, length=block_size) data += base64.b64decode(jdoc["data"]) return data def put_file( self, file_obj, dbfs_path: str, overwrite: bool = False, block_size: int = 1024**2 ) -> None: """Upload an arbitrary large file to DBFS. This doesn't use the DBFS `Put` API because that endpoint is limited to 1MB. """ if dbfs_path.startswith("dbfs://"): dbfs_path = dbfs_path[7:] dbfs_service = DbfsService(self.api_client) create_response = dbfs_service.create(path=dbfs_path, overwrite=overwrite) handle = create_response["handle"] block = file_obj.read(block_size) while block: data = base64.b64encode(block).decode("utf-8") dbfs_service.add_block(data=data, handle=handle) block = file_obj.read(block_size) dbfs_service.close(handle=handle) def get_run_state(self, databricks_run_id: int) -> "DatabricksRunState": """Get the state of a run by Databricks run ID. Return a `DatabricksRunState` object. Note that the `result_state` attribute may be `None` if the run hasn't yet terminated. """ run = JobsService(self.api_client).get_run(databricks_run_id) state = run["state"] result_state = ( DatabricksRunResultState(state.get("result_state")) if state.get("result_state") else None ) return DatabricksRunState( life_cycle_state=DatabricksRunLifeCycleState(state["life_cycle_state"]), result_state=result_state, state_message=state["state_message"], )
class DatabricksJobRunner: """Submits jobs created using Dagster config to Databricks, and monitors their progress.""" def __init__( self, host: str, token: str, poll_interval_sec: float = 5, max_wait_time_sec: int = DEFAULT_RUN_MAX_WAIT_TIME_SEC, ): """Args: host (str): Databricks host, e.g. https://uksouth.azuredatabricks.net token (str): Databricks token """ self.host = check.str_param(host, "host") self.token = check.str_param(token, "token") self.poll_interval_sec = check.numeric_param(poll_interval_sec, "poll_interval_sec") self.max_wait_time_sec = check.int_param(max_wait_time_sec, "max_wait_time_sec") self._client: DatabricksClient = DatabricksClient(host=self.host, token=self.token) @property def client(self) -> DatabricksClient: """Return the underlying `DatabricksClient` object.""" return self._client def submit_run(self, run_config: Mapping[str, Any], task: Mapping[str, Any]) -> int: """Submit a new run using the 'Runs submit' API.""" existing_cluster_id = run_config["cluster"].get("existing") new_cluster = run_config["cluster"].get("new") # The Databricks API needs different keys to be present in API calls depending # on new/existing cluster, so we need to process the new_cluster # config first. if new_cluster: new_cluster = new_cluster.copy() nodes = new_cluster.pop("nodes") if "instance_pool_id" in nodes: new_cluster["instance_pool_id"] = nodes["instance_pool_id"] else: node_types = nodes["node_types"] new_cluster["node_type_id"] = node_types["node_type_id"] if "driver_node_type_id" in node_types: new_cluster["driver_node_type_id"] = node_types["driver_node_type_id"] cluster_size = new_cluster.pop("size") if "num_workers" in cluster_size: new_cluster["num_workers"] = cluster_size["num_workers"] else: new_cluster["autoscale"] = cluster_size["autoscale"] tags = new_cluster.get("custom_tags", []) tags.append({"key": "__dagster_version", "value": dagster.__version__}) new_cluster["custom_tags"] = tags check.invariant( existing_cluster_id is not None or new_cluster is not None, "Invalid value for run_config.cluster", ) # We'll always need some libraries, namely dagster/dagster_databricks/dagster_pyspark, # since they're imported by our scripts. # Add them if they're not already added by users in config. libraries = list(run_config.get("libraries", [])) install_default_libraries = run_config.get("install_default_libraries", True) if install_default_libraries: python_libraries = { x["pypi"]["package"].split("==")[0].replace("_", "-") for x in libraries if "pypi" in x } for library_name, library in [ ("dagster", dagster), ("dagster-databricks", dagster_databricks), ("dagster-pyspark", dagster_pyspark), ]: if library_name not in python_libraries: libraries.append( {"pypi": {"package": "{}=={}".format(library_name, library.__version__)}} ) # Only one task should be able to be chosen really; make sure of that here. check.invariant( sum( task.get(key) is not None for key in [ "notebook_task", "spark_python_task", "spark_jar_task", "spark_submit_task", ] ) == 1, "Multiple tasks specified in Databricks run", ) config = { "run_name": run_config.get("run_name"), "new_cluster": new_cluster, "existing_cluster_id": existing_cluster_id, "libraries": libraries, **task, } return JobsService(self.client.api_client).submit_run(**config)["run_id"] def retrieve_logs_for_run_id(self, log: logging.Logger, databricks_run_id: int): """Retrieve the stdout and stderr logs for a run.""" api_client = self.client.api_client run = JobsService(api_client).get_run(databricks_run_id) cluster = ClusterService(api_client).get_cluster(run["cluster_instance"]["cluster_id"]) log_config = cluster.get("cluster_log_conf") if log_config is None: log.warn( "Logs not configured for cluster {cluster} used for run {run}".format( cluster=cluster["cluster_id"], run=databricks_run_id ) ) return None if "s3" in log_config: logs_prefix = log_config["s3"]["destination"] log.warn("Retrieving S3 logs not yet implemented") return None elif "dbfs" in log_config: logs_prefix = log_config["dbfs"]["destination"] stdout = self.wait_for_dbfs_logs(log, logs_prefix, cluster["cluster_id"], "stdout") stderr = self.wait_for_dbfs_logs(log, logs_prefix, cluster["cluster_id"], "stderr") return stdout, stderr def wait_for_dbfs_logs( self, log: logging.Logger, prefix, cluster_id, filename, waiter_delay: int = 10, waiter_max_attempts: int = 10, ) -> Optional[str]: """Attempt up to `waiter_max_attempts` attempts to get logs from DBFS.""" path = "/".join([prefix, cluster_id, "driver", filename]) log.info("Retrieving logs from {}".format(path)) num_attempts = 0 while num_attempts <= waiter_max_attempts: try: logs = self.client.read_file(path) return logs.decode("utf-8") except requests.exceptions.HTTPError: num_attempts += 1 time.sleep(waiter_delay) log.warn("Could not retrieve cluster logs!") def wait_for_run_to_complete( self, log: logging.Logger, databricks_run_id: int, verbose_logs: bool = True ): return wait_for_run_to_complete( self.client, log, databricks_run_id, self.poll_interval_sec, self.max_wait_time_sec, verbose_logs, ) def poll_run_state( client: DatabricksClient, log: logging.Logger, start_poll_time: float, databricks_run_id: int, max_wait_time_sec: float, verbose_logs: bool = True, ): run_state = client.get_run_state(databricks_run_id) if run_state.has_terminated(): if run_state.is_successful(): log.info("Run %s completed successfully" % databricks_run_id) return True else: error_message = "Run %s failed with result state: %s. Message: %s" % ( databricks_run_id, run_state.result_state, run_state.state_message, ) log.error(error_message) raise DatabricksError(error_message) else: if verbose_logs: log.debug("Run %s in state %s" % (databricks_run_id, run_state)) if time.time() - start_poll_time > max_wait_time_sec: raise DatabricksError( "Job run {} took more than {}s to complete; failing".format( databricks_run_id, max_wait_time_sec ) ) return False def wait_for_run_to_complete( client: DatabricksClient, log: logging.Logger, databricks_run_id: int, poll_interval_sec: float, max_wait_time_sec: int, verbose_logs: bool = True, ) -> None: """Wait for a Databricks run to complete.""" check.int_param(databricks_run_id, "databricks_run_id") log.info("Waiting for Databricks run %s to complete..." % databricks_run_id) start = time.time() while True: if poll_run_state(client, log, start, databricks_run_id, max_wait_time_sec, verbose_logs): return time.sleep(poll_interval_sec)